sábado, 8 de noviembre de 2014

Ahead of Print -Residual Infestation and Recolonization during Urban Triatoma infestans Bug Control Campaign, Peru1 - Volume 20, Number 12—December 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Ahead of Print -Residual Infestation and Recolonization during Urban Triatoma infestans Bug Control Campaign, Peru1 - Volume 20, Number 12—December 2014 - Emerging Infectious Disease journal - CDC

CDC. Centers for Disease Control and Prevention. CDC 24/7: Saving Lives. Protecting People.



World Pneumonia Day



Volume 20, Number 12—December 2014

Research

Residual Infestation and Recolonization during Urban Triatoma infestans Bug Control Campaign, Peru1

Corentin M. BarbuComments to Author , Alison M. Buttenheim, Maria-Luz Hancco Pumahuanca, Javier E. Quintanilla Calderón, Renzo Salazar, Malwina Carrión, Andy Catacora Rospigliossi, Fernando S. Malaga Chavez, Karina Oppe Alvarez, Juan Cornejo del Carpio, César Náquira, and Michael Z. Levy
Author affiliations: University of Pennsylvania, Philadelphia, Pennsylvania, USA (C.M. Barbu, A.M. Buttenheim, M.Z. Levy)Universidad Peruana Cayetano Heredia, Arequipa, Peru (M.-L. Hancco Pumahuanca, J.E. Quintanilla Calderón, R. Salazar, M. Carrión, C. Náquira)Red de Salud Aequipa Caylloma, Arequipa (A. Catacora Rospigliossi)Dirección Regional del Ministerio de Salud, Arequipa (F.S. Malaga Chavez, K.Oppe Alvarez, J. Cornejo del Carpio)

Abstract

Chagas disease vector control campaigns are being conducted in Latin America, but little is known about medium-term or long-term effectiveness of these efforts, especially in urban areas. After analyzing entomologic data for 56,491 households during the treatment phase of a Triatoma infestans bug control campaign in Arequipa, Peru, during 2003–2011, we estimated that 97.1% of residual infestations are attributable to untreated households. Multivariate models for the surveillance phase of the campaign obtained during 2009–2012 confirm that nonparticipation in the initial treatment phase is a major risk factor (odds ratio [OR] 21.5, 95% CI 3.35–138). Infestation during surveillance also increased over time (OR 1.55, 95% CI 1.15–2.09 per year). However, we observed a negative interaction between nonparticipation and time (OR 0.73, 95% CI 0.53–0.99), suggesting that recolonization by vectors progressively dilutes risk associated with nonparticipation. Although the treatment phase was effective, recolonization in untreated households threatens the long-term success of vector control.
Chagas disease, an often deadly disease widespread in the Americas, is caused by the protozoan parasiteTrypanosoma cruzi (1,2) and transmitted by hematophageous triatomine insects (3). In southern South AmericaTriatoma infestans bugs are the primary vector (2). In 1991, the nations of this region created the Southern Cone Initiative to coordinate control efforts against T. infestans bugs. During the first decade of this initiative, 2.5 million households were treated with insecticide (4), which led to disruption of transmission of T. cruzi by T. infestans bugs in several countries and states (2). However, vector control efforts have at times failed unexpectedly and repeatedly in some areas (5,6).
Across most of its range, T. infestans bugs are found predominantly in rural areas (2). However, the vector has become an urban problem in Arequipa, Peru, a city of 850,000 inhabitants (79) where infected vectors have been observed since 1952 (10). Since 2003, municipal authorities and the regional ministry of health, in collaboration with the Pan American Health Organization, have worked to eliminate the vector from this city. The challenges to elimination in an urban area potentially differ from those in rural settings. Urban households have smaller peridomestic areas, fewer sources of blood, and fewer hiding places for the vector, thus mitigating some of the difficulties encountered in rural environments (7,1113). However, although participation in control campaigns in rural areas is typically high (5,7), more affluent urban populations (14) might be more reluctant to participate (15). Thus, household level control might be easier in an urban household than in a rural household. However, at the community level, sustained control in an urban community might be more difficult.
We explored this hypothesis by using data obtained in Arequipa during the initial treatment phase or attack phase of the vector campaign and during the subsequent surveillance phase after insecticide application. We evaluated the effectiveness of the treatment phase in 3 ways. First, we estimated the reduction in the infestation prevalence resulting from the 2 insecticide applications of the treatment phase. Second, we modeled recolonization (the colonization of new households after the initial treatment) as a function of treatment phase factors. Third, during the surveillance phase, we tested insects captured from households treated during the treatment phase for resistance to insecticide. We discuss converging results of these approaches in terms of their implications for continued efforts of the control campaign in Arequipa and, more generally, for design of strategies to control Chagas disease vectors in urban environments.

Dr Barbu is a postdoctoral fellow in epidemiology at the University of Pennsylvania, Philadelphia, Pennsylvania. His primary research interest is applying computational and statistical methods to understand and control populations of Chagas disease vectors.

Acknowledgments

We thank the Ministerio de Salud del Peru, the Dirección General de Salud de las Personas through the Estrategia Sanitaria Nacional de Prevención y Control de Enfermedades Metaxénicas y Otras Transmitidas por Vectores, the Dirección General de Salud Ambiental, the Gobierno Regional de Arequipa, the Gerencia Regional de Salud de Arequipa, the Red de Salud Arequipa Caylloma, the Pan American Health Organization, the Canadian International Development Agency, and the Gobierno Regional de Arequipa for organizing and conducting the Chagas disease control campaign in Arequipa; and Sébastien Gourbière, Yage Wu, Daniel Rivera Lana, Karthik Sethuraman, and Dylan Tracy for providing editing suggestions for the manuscript.
This study was supported by National Institutes of Health grants NIH-NIAID R01AI101229, P50 AI074285, and K01 AI079162, and a University of Pennsylvania Global Engagement grant.

References

  1. Maguire JHHoff RSherlock IGuimarães ACSleigh ACRamos NBCardiac morbidity and mortality due to Chagas’ disease: prospective electrocardiographic study of a Brazilian community. Circulation1987;75:11405DOIPubMed
  2. Moncayo AChagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries. Mem Inst Oswaldo Cruz2003;98:57791DOIPubMed
  3. Gourbière SDorn PTripet FDumonteil EGenetics and evolution of triatomines: from phylogeny to vector control. Heredity2012;108:190202.DOIPubMed
  4. Levine R. Case 12: controlling Chagas disease in the southern cone of South America. In: Center for global development, editor. Case studies in global health. Millions saved case studies. Burlington (MA): Jones & Bartlett Learning; 2007. p. 95–102.
  5. Porcasi XCatalá SHrellac HScavuzzo MGorla DInfestation of rural houses by Triatoma infestans (Hemiptera: Reduviidae) in southern area of Gran Chaco in Argentina. J Med Entomol2006;43:10607DOIPubMed
  6. Gurevitz JMGaspe MSEnriquez GFProvecho YMKitron UGürtler REIntensified surveillance and insecticide-based control of the Chagas disease vector Triatoma infestans in the Argentinean Chaco. PLoS Negl Trop Dis2013;7:e2158DOIPubMed
  7. Levy MZBowman NMKawai VWaller LACornejo del Carpio JGBenzaquen ECPeriurban Trypanosoma cruzi–infected Triatoma infestans, Arequipa, Peru. Emerg Infect Dis2006;12:134552 . DOIPubMed
  8. Bayer AMHunter GCGilman RHCornejo del Carpio JGNaquira CBern CChagas disease, migration and community settlement patterns in Arequipa, Peru. PLoS Negl Trop Dis2009;3:e567DOIPubMed
  9. Oficina Técnica de Difusión INEI. IV Censo nacional agropecuario, nota de prensa. Lima, Peru: Instituto Nacional de Estadística e Informática. July 10,2012 [cited 2013 Jul 8]. http://www.inei.gob.pe/web/NotaPrensa/Attach/14584.pdf
  10. Lumbreras Cruz HEpidemiology of Chagas disease during the urbanization of Miraflores de Arequipa [in Spanish]Arch Pathol1952;6:191200.
  11. Cecere MCCanale DMGürtler REEffects of refuge availability on the population dynamics of Triatoma infestans in central Argentina. J Appl Ecol.2003;40:74256DOI
  12. Gürtler REKitron UCecere MCSegura ELCohen JESustainable vector control and management of Chagas disease in the Gran Chaco, Argentina.Proc Natl Acad Sci U S A2007;104:161949 . DOIPubMed
  13. Saunders MSmall ADedicoat MRoberts LThe development and validation of a risk score for household infestation by Triatoma infestans, a Bolivian vector of Chagas disease. Trans R Soc Trop Med Hyg2012;106:67782DOIPubMed
  14. Escobal JThe determinants of nonfarm income diversification in rural Peru. World Dev2001;29:497508DOI
  15. Buttenheim AMPaz-Soldan VBarbu CSkovira CCalderón JQRiveros LMIs participation contagious? Evidence from a household vector control campaign in urban Peru. J Epidemiol Community Health2014;68:1039DOIPubMed
  16. Google Earth. Arequipa, Peru, metropolis. Mountain View (CA): Google Inc. Aug 17, 2009 [cited 2010 Apr 1].http://www.google.com/earth/index.html.
  17. Delgado SErnst KCPumahuanca MLYool SRComrie ACSterling CRA country bug in the city: urban infestation by the Chagas disease vectorTriatoma infestans in Arequipa, Peru. Int J Health Geogr2013;12:48 and. DOIPubMed
  18. Palomino MVillaseca PCárdenas FAncca JPinto MEfficiency and residuality of two insecticide pyrethroids against Triatoma infestans in three types of housing: field evaluation in Arequipa, Peru [in Spanish]Perú Revista Peruana de Medicina Experimental y Salud Publica. 2008;25:916.
  19. Bates DMaechler MBolker B. lme4: linear mixed-effects models using S4 classes, 2013. R package version 0.999999–2 [cited 2014 Jul 25].http://CRAN.R-project.org/package=lme4.
  20. Levy MZBarbu CMCastillo-Neyra RQuispe-Machaca VRAncca-Juarez JEscalante-Mejia PUrbanization, land tenure security and vector-borne Chagas disease. Proc Biol Sci2014;281:20141003DOIPubMed
  21. Hong ABarbu CSmall DLevy M. Mapping the spatial distribution of a disease transmitting insect in the presence of surveillance error and missing data. J R Stat Soc [Ser A]. 2014 [cited 2014 Sep 22]. http://onlinelibrary.wiley.com/enhanced/doi/10.1111/rssa.12077/
  22. Nagelkerke NJA note on a general definition of the coefficient of determination. Biometrika1991;78:6912DOI
  23. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2014 [cited 2014 Jul 25].http://www.R-project.org.
  24. Centro de Investigaciones de Plagas e Insecticidas/ Centro Institucional de Investigaciones Cientificas y Técnicas de las Fuerzas Armadas/Consejo Nacional de Investigaciones Científicas y Técnicas (CIPEIN/CITEFA/CONICET). Protocolo de evaluación de efecto insecticida en Triatoma infestans. Buenos Aires, Argentina: CIPEIN/WHO/TDR, 2005 [cited 2013 Jul 15]. http://www.anmat.gov.ar/webanmat/Protocolo_Traitoma.asp.
  25. Barbu CMHong AManne JMSmall DSQuintanilla Calderón JESethuraman KThe effects of city streets on an urban disease vector. PLOS Comput Biol2013;9:e1002801DOIPubMed
  26. Gürtler REPetersen RMCecere MCSchweigmann NJChuit RGualtieri JMChagas disease in north-west Argentina: risk of domestic reinfestation by Triatoma infestans after a single community-wide application of deltamethrin. Trans R Soc Trop Med Hyg1994;88:2730DOIPubMed
  27. Gürtler RECecere MCanale DCastañera MChuit RCohen JMonitoring house reinfestation by vectors of Chagas disease: a comparative trial of detection methods during a four-year follow-up. Acta Trop1999;72:21334DOIPubMed
  28. Cecere MCVazquez-Prokopec GMGürtler REKitron USpatio-temporal analysis of reinfestation by Triatoma infestans (Hemiptera: Reduviidae) following insecticide spraying in a rural community in northwestern Argentina. Am J Trop Med Hyg2004;71:80310 .PubMed
  29. Pérez de Rosas ARSegura ELGarcía BAMicrosatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol.2007;16:140112DOIPubMed
  30. Gaspe MSGurevitz JMGürtler REDujardin J-POrigins of house reinfestation with Triatoma infestans after insecticide spraying in the Argentine Chaco using wing geometric morphometry. Infect Genet Evol2013;17:93100DOIPubMed
  31. Levy MZQuíspe-Machaca VRYlla-Velasquez JLWaller LARichards JMRath BImpregnated netting slows infestation by Triatoma infestans. Am J Trop Med Hyg2008;79:52834 .PubMed
  32. Picollo MIVassena COrihuela PSBarrios SZaidemberg MZerba EHigh resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from northern Argentina. J Med Entomol2005;42:63742 . DOIPubMed
  33. Toloza ACGermano MCueto GMVassena CZerba EPicollo MIDifferential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol2008;45:4216 . DOIPubMed
  34. Germano MDAcevedo GRCueto GAToloza AVassena CPicollo MNew findings of insecticide resistance in Triatoma infestans (Heteroptera: Reduviidae) from the Gran Chaco. J Med Entomol2010;47:107781DOIPubMed
  35. Espinoza NBorrás RAbad-Franch FChagas disease vector control in a hyperendemic setting: the first 11 years of intervention in Cochabamba, Bolivia. PLoS Negl Trop Dis2014;8:e2782DOIPubMed
  36. Adelman ZNKilcullen KAKoganemaru RAnderson MAEAnderson TDMiller DMDeep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population. PLoS ONE2011;6:e26228DOIPubMed
  37. Levy MZKawai VBowman NMWaller LACabrera LPinedo-Cancino VVTargeted screening strategies to detect Trypanosoma cruzi infection in children. PLoS Negl Trop Dis2007;1:e103DOIPubMed
  38. Noireau FWild Triatoma infestans, a potential threat that needs to be monitored. Mem Inst Oswaldo Cruz2009;104:604DOIPubMed
  39. Ceballos LAPiccinali RVMarcet PLVazquez-Prokopec GMCardinal MVSchachter-Broide JHidden sylvatic foci of the main vector of Chagas disease Triatoma infestans: threats to the vector elimination campaign? PLoS Negl Trop Dis2011;5:e1365 . DOIPubMed

Figures

Tables

Suggested citation for this article: Barbu CM, Buttenheim AM, Hancco Pumahuanca ML, Quintanilla Calderón JE, Salazar R, Carrión M, et al. Residual infestation and recolonization during urban Triatoma infestans bug control campaign, Peru. Emerg Infect Dis [Internet]. 2012 Dec [date cited].http://dx.doi.org/10.3201/eid2012.131820
DOI: 10.3201/eid2012.131820
1A Spanish version of this article is available online (http://www.spatcontrol.net/articles/Barbu2014/traduccionEspanol.pdf).

No hay comentarios:

Publicar un comentario