martes, 25 de diciembre de 2012

Novel Framework for Assessing Epidemiologic Effects of Influenza Epidemics and Pandemics - - Emerging Infectious Disease journal - CDC

full-text ►
Novel Framework for Assessing Epidemiologic Effects of Influenza Epidemics and Pandemics - - Emerging Infectious Disease journal - CDC

Bookmark and Share
EID cover artwork EID banner
Table of Contents
Volume 19, Number 1–January 2013

Research

Novel Framework for Assessing Epidemiologic Effects of Influenza Epidemics and Pandemics

Carrie ReedComments to Author , Matthew Biggerstaff, Lyn Finelli, Lisa M. Koonin, Denise Beauvais, Amra Uzicanin, Andrew Plummer, Joe Bresee, Stephen C. Redd, and Daniel B. Jernigan
Author affiliations: Author affiliation: Centers for Disease Control and Prevention, Atlanta, Georgia, USA
Suggested citation for this article

Abstract

The effects of influenza on a population are attributable to the clinical severity of illness and the number of persons infected, which can vary greatly between seasons or pandemics. To create a systematic framework for assessing the public health effects of an emerging pandemic, we reviewed data from past influenza seasons and pandemics to characterize severity and transmissibility (based on ranges of these measures in the United States) and outlined a formal assessment of the potential effects of a novel virus. The assessment was divided into 2 periods. Because early in a pandemic, measurement of severity and transmissibility is uncertain, we used a broad dichotomous scale in the initial assessment to divide the range of historic values. In the refined assessment, as more data became available, we categorized those values more precisely. By organizing and prioritizing data collection, this approach may inform an evidence-based assessment of pandemic effects and guide decision making.
Pandemic influenza results from the emergence of a new influenza A virus to which the population possesses little or no immunity (1). Past pandemic influenza viruses have spread rapidly worldwide, affecting persons of all ages and causing substantial illness and death. Influenza can result in a wide spectrum of clinical outcomes in infected persons, including asymptomatic infection, medically and non–medically attended respiratory illness, hospitalization, or death. The likelihood of these outcomes is variable and depends on many factors, including the age of the patient, the presence of underlying medical conditions, and characteristics of the virus itself (2).
Figure 1
Thumbnail of Estimates of influenza deaths in the 2010 United States population (308,745,538 persons) across varying values of case-fatality ratio and the cumulative incidence of infection in the population. Selected estimated numbers of deaths are indicated with a black line, across each relevant combination of case-fatality ratio and cumulative incidence. In addition, the background color transitions from blue to yellow to red as the estimated absolute number of deaths increases.Figure 1. . Estimates of influenza deaths in the 2010 United States population (308,745,538 persons) across varying values of case-fatality ratio and the cumulative incidence of infection in the population. Selected estimated numbers...
The overall number of illnesses and deaths from influenza in the population may be primarily attributable to a combination of both the clinical severity of illness in infected persons and the transmissibility of the infection in the population. Figure 1 shows the increasing expected number of deaths in the US population as both the cumulative incidence of influenza in the population and the case-fatality ratio (CFR) increase.
Because the risk for severe outcomes and differences in the rates of transmission of the virus can vary, the effects on the population observed during pandemics have ranged from those similar to severe seasonal influenza epidemics to those experienced during the 1918 influenza pandemic. Depending on the overall population effects, a pandemic could overwhelm the capacities of public health and health care systems or result in societal disruption because of school or workplace absenteeism, which could affect critical infrastructure (1,3).
Historically, assessment of influenza pandemic effects has been characterized by using an estimate of the overall CFR (4). Although this approach provided guidance for planning and projections of the expected number of deaths from pandemic influenza in the population, using that ratio alone presents several challenges. First, deaths from influenza may occur weeks after illness begins and can also be subject to reporting bias, delaying the ability of public health and government leaders to quickly issue recommendations for evidence-based public health interventions if they lack an accurate estimate of CFR. Second, a single overall CFR does not fully account for the varying effects a seasonal epidemic or pandemic could have on vulnerable population subgroups, which could include children or the elderly, those with chronic conditions, or certain racial and ethnic minorities. Finally, CFR does not address other societal effects, such as absenteeism or the demand on health care services from excess outpatient visits and hospitalizations, that could result from increased transmission. Because of these limitations, relying on CFR as a single measure of the effects on a population may make an assessment difficult if such data are not yet available early in a pandemic or misleading if the available data are not well characterized and the biases are not well understood.
The ability to synthesize epidemiologic data collected early during a pandemic to characterize its anticipated public health effects is of vital importance to public health officials in the United States and worldwide. Here we provide a conceptual framework with which to characterize the expected effects of a pandemic in the context of past experience with influenza epidemics and pandemics in the United States. We examined published data from past influenza seasons and pandemics to determine the range of effects of influenza in the United States. The framework provides a basic structure by which to synthesize epidemiologic data and on which preparedness plans can be developed to guide and communicate the pandemic influenza response.

No hay comentarios:

Publicar un comentario